Laser Speckle Vs other technologies

诚信、责任、

奋

质量、

RUD What is Laser Speckle?

Image by RFLSIII

What is Laser Speckle?

When a laser is used to illuminate blood vessel tissue, the reflected light varies in intensity since the red blood cells in the vessels continue to flow . The image sensor collects all the reflected light signals,then convert the reflected laser signal into image signal,which then constitute a blurred speckle pattern.

The faster the blood flow, the faster the red blood cells flow, and the more the speckle image is blurred.

Technology	Advantages	Disadvantages
Laser speckle imaging system	Non-invasive(non-contact) Full filed with Real-time imaging High quality quantized data Easy to get started	Desktop computer is required
Laser Doppler	Non-invasive	Without imaging
Pet-CT	Quantitative High accuracy and sensitivity	High cost of use High price Complicated operation
FMRI (Functional magnetic resonance imaging)	Get the information of brain both structural and the activities area	High cost of use High purchase cost Time-consuming
Ultrasound Doppler	Non-invasive Radiation-free Quantitative of blood flow	Probe indispensable Limited detection area
Fluorescent contrast agent	More suitable for disease diagnosis and prognosis evaluation	Fluorescence quenching Complicated preparation

• **Competition** with other technologies

RWD Laser Speckle Contrast Imaging RFLSI

RWD Laser Speckle Imaging System (RFLSI \square) is a blood perfusion imager based on Laser Speckle Contrast Imaging (LSCI) technology. LSCI provides a better method to study the microcirculation that were not possible in the past. It allows visualization of tissue blood perfusion and imaging with high time and spatial resolution. Quantified data can be obtained, without contact to the tissue, nor dyes or tracer elements.

RWD Laser Speckle Imaging System

Product Features:

- High time & spatial resolution
- Non-contact, No contrast agent
- Full field real-time imaging
- Multi-output: Video, Image, Quantified data of Blood flow perfusion or vessel diameter
- Offline software analysis

Wide Applications

RUD Laser Speckle Imaging System-Application

Applications:

Cerebral Blood Flow Monitoring Cortical Spreading Depolarization Neovascularization/Angiogenesis Stroke Model(MCAO) assessment Skin Blood Flow Monitoring Organ Blood Flow Monitoring Hind Limb Ischemia

Lower limb ischemia, diabetic foot, ischemic ulcer

RUD Application

Inner ear canal

Anesthetize the mice; stick the auricles flat and seamlessly on the glass slide with double-sided tape, and drop saline on the auricles; turn on the laser speckle flow meter, and use the 785 nm laser to the mouse auricle blood flow for imaging, observe and record in high signal-to-noise ratio mode.

Brain

Anesthetize the mice, remove the head hair and scalp, and fix the mice on a stereotaxic instrument; use a laser speckle blood flow meter at 785 nm, record in high signal-to-noise ratio mode, and observe the cerebral blood flow.

Intestinal mucosa

Anesthetize the mice; open the abdominal cavity, select the area of the mesentery that is suitable for observation, and spread the warm Krebs solution (37 ° C) to keep the mesentery moist and maintain its normal physiological function; The 785 nm laser was used to image the intestinal mucosal blood flow of mice, and the high signal-to-noise ratio mode was used to observe and record.

•Example 1: blood perfusion imaging of MCAO model in rat cortex

Before MCAO

After MCAO established

•Example 2: Cortical blood flow imaging of tree shrew (nonhuman primate)

Normal

Over anesthesia

•Example 3: cerebral blood flow distribution of the mini-stroke model in a rat cortex

normal

The model has been established

The model has been removed for 24 hours