• 68001
  • 68037

Standard Stereotaxic Instruments

  • Unique UP indicator to prevent incorrect operation
  • Double-lead screw design, more stable and accurate operation
  • Relieve eyestrain by light interrupted
  • Curved nose clamp secure the animal firmly
  • Adaptors of rats, mice, birds, cats and other different animal are optional

Technical Specifications

  • Technical Parameters
  • Model information
  • Manual
  • Accessories
  1. Adaptors available for rat, mouse, rabbit, guinea pig, etc.
  2. Working distance in each dimension is 80 mm with precise alignment to 0.1mm resolution.
  3. Vertical direction: 180° rotation and lock at any angles.
  4. Horizontal direction: 360° rotation and lock at any angles.
  5. Dual-lead screws ensure stable, accurate and smooth manipulation.
  6. Accuracy and flexibility can be maintained at variable temperatures.
  7. Extended base plate (400mm x 255mm) is applicable for a variety of animal sizes.
  8. Unique anti-clockwise UP mark engraved in the knob prevents incorrect operation.
  9. Vertical lock and fixing knob are separated to ensure accurate function at any angle.
  10. To ensure a precise designed lateral rotation operating space, the distance between knob and the U-shaped frame is 28mm.
  11. Laser engraved scales enable comfortable reading.
  12. Curved nose clamp design secures the head of animals.
  13. Ear bar locked plate pressing instead of clamping ensures more stability.
  14. Syringe pump, micro camera and drill can be attached to instruments.
    Subassembly

Model

AdaptorEar barThree-dimensional manipulatorHolderBase plate
6800168021 Rat18°SGL-Left6820168861N
6800268021 Rat18°Dual6820168861N
6800568021 Rat45°SGL-Left6820168861N
6800668021 Rat45°Dual6820168861N
6803768030 MouseIncluded in 68030SGL-Left6820168861N
6803868030

Mouse

Included in 68030Dual6820168861N
680436805560°SGL-Left6820168861N
680446805560°Dual6820168861N
685356807760°SGL-Left6820168861N
685366807818°Dual6820168861N

      Applications

      • image
        Neuroanatomy, neurophysiology, neuropharmacology and neurosurgery

      Articles

      1. Diao, Y., Cui, L., Chen, Y., Burbridge, T. J., Han, W., Wirth, B., … & Zhang, J. (2018). Reciprocal connections between cortex and thalamus contribute to retinal axon targeting to dorsal lateral geniculate nucleus. Cerebral Cortex, 28(4), 1168-1182.
      2. Fan, X. C., Fu, S., Liu, F. Y., Cui, S., Yi, M., & Wan, Y. (2018). Hypersensitivity of prelimbic cortex neurons contributes to aggravated nociceptive responses in rats with experience of chronic inflammatory pain. Frontiers in molecular neuroscience, 11, 85.
      3. Liu, Y., Lai, S., Ma, W., Ke, W., Zhang, C., Liu, S., … & Shu, Y. (2017). CDYL suppresses epileptogenesis in mice through repression of axonal Nav1. 6 sodium channel expression. Nature communications, 8(1), 1-17.
      4. Tang, Y., Lin, Y. H., Ni, H. Y., Dong, J., Yuan, H. J., Zhang, Y., … & Chang, L. (2017). Inhibiting Histone Deacetylase 2 (HDAC 2) Promotes Functional Recovery From Stroke. Journal of the American Heart Association, 6(10), e007236.
      5. Huang, L., Yuan, T., Tan, M., Xi, Y., Hu, Y., Tao, Q., … & Luo, M. (2017). A retinoraphe projection regulates serotonergic activity and looming-evoked defensive behaviour. Nature communications, 8(1), 1-13.
      6. Zhu, M., Li, H., Gyanwali, B., He, G., Qi, C., Yang, X., … & Tang, A. (2017). Auditory brainstem responses after electrolytic lesions in bilateral subdivisions of the medial geniculate body of tree shrews. Neurological Sciences, 38(9), 1617-1628.
      7. Lei, Z., Wang, D., Chen, N., Ma, K., Lu, W., Song, Z., … & Wang, J. H. (2017). Synapse innervation and associative memory cell are recruited for integrative storage of whisker and odor signals in the barrel cortex through miRNA-mediated processes. Frontiers in cellular neuroscience, 11, 316.
      8. Zhou, H., Xiong, G. J., Jing, L., Song, N. N., Pu, D. L., Tang, X., … & Richter-Levin, G. (2017). The interhemispheric CA1 circuit governs rapid generalisation but not fear memory. Nature communications, 8(1), 1-10.
      9. Zhang, J., Liu, H., Du, X., Guo, Y., Chen, X., Wang, S., … & Zhang, W. (2017). Increasing of blood-brain tumor barrier permeability through transcellular and paracellular pathways by microbubble-enhanced diagnostic ultrasound in a C6 glioma model. Frontiers in neuroscience, 11, 86.
      10. Li, G. F., Zhao, H. X., Zhou, H., Yan, F., Wang, J. Y., Xu, C. X., … & Zhang, H. L. (2016). Improved anatomical specificity of non-invasive neuro-stimulation by high frequency (5 MHz) ultrasound. Scientific reports, 6(1), 1-11.
      11. Liu, M. G., Li, H. S., Li, W. G., Wu, Y. J., Deng, S. N., Huang, C., … & Xu, T. L. (2016). Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms. Scientific reports, 6, 23350.
      12. Zhao, Baisong, et al. “Hyperbaric oxygen pretreatment improves cognition and reduces hippocampal damage via p38 mitogen-activated protein kinase in a rat model.” Yonsei medical journal 58.1 (2017): 131-138.
      13. Zhao, Yunan, et al. “Decreased glycogen content might contribute to chronic stress-induced atrophy of hippocampal astrocyte volume and depression-like behavior in rats.” Scientific reports 7 (2017): 43192.
      14. Espinosa, P., Silva, R. A., Sanguinetti, N. K., Venegas, F. C., Riquelme, R., González, L. F., … & Sotomayor-Zárate, R. (2016). Programming of dopaminergic neurons by neonatal sex hormone exposure: effects on dopamine content and tyrosine hydroxylase expression in adult male rats. Neural plasticity, 2016.
      15. Li, Wei-Guang, et al. “ASIC1a regulates insular long-term depression and is required for the extinction of conditioned taste aversion.” Nature communications 7.1 (2016): 1-15.
      16. Wang, G. Q., Cen, C., Li, C., Cao, S., Wang, N., Zhou, Z., … & Wang, J. (2015). Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety. Nature communications, 6(1), 1-16.

      Related Products

      Have Any Questions?

      Send Us A Message

      • 1.Fill in the form and our experts will get back to you ASAP!
      • 2.Ask about An Equipment
      • 3.Wondering which equipment to conduct your researches or perform your experiments? Our sales reps will try their best to share their knowledge with you!
      • 4.Get Technical Support
      • 5.An RWD equipment is not performing? Talk to our support team to get instant feedback!

      Contact Us

      Top